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An analytic perturbation theory is suggested in order to find finite-size corrections to
the scaling power laws. In the frame of this theory it is shown that the first order finite-
size correction to the scaling power laws has following form S(r) = cr*0[In(r/n)]*!,
where 7 is a finite-size scale (in particular for turbulence, it can be the Kolmogorov
dissipation scale). Using data of laboratory experiments and numerical simulations it
is shown shown that a degenerate case with ag = 0 can describe turbulence statistics
in the near-dissipation range » > n, where the ordinary (power-law) scaling does not
apply. For moderate Reynolds numbers the degenerate scaling range covers almost the
entire range of scales of velocity structure functions (the log-corrections apply to finite
Reynolds number). Interplay between local and non-local regimes has been considered
as a possible hydrodynamic mechanism providing the basis for the degenerate scaling of
structure functions and extended self-similarity. These results have been also expanded
on passive scalar mixing in turbulence. Overlapping phenomenon between local and
non-local regimes and a relation between position of maximum of the generalized energy
input rate and the actual crossover scale between these regimes are briefly discussed.
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1. INTRODUCTION

Scaling and related power laws are widely used in physics. In real situations,
however, scaling holds only approximately. As a consequence, the corresponding
scaling power laws hold approximately as well. On the other hand, discovery of
the extended self-similarity in turbulence!? and in the critical phenomena (see
for a review 3?) shows that universal laws similar to the scaling ones can go far
beyond the scaling itself, both for velocity!:» and for different fields convected
by turbulence.®® The question is: does the extended self-similarity (ESS) can
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be theoretically explored in the frames of general scaling ideas or one needs in a
completely new frames to explain the ESS? In turbulence this problem is related
to the problem of the so-called near-dissipation range. Theoretical approach to
description of the scaling (the so-called inertial) range of scales in turbulence
requires that the space scales r > n, where 5 is (Kolmogorov) dissipation or
molecular viscous scale.”® On the other hand, the near-dissipation range of
scales, for which » > 1 has a more complex, presumably non-scaling dynamics
(see, for instance, Refs.*~19 and the references cited there). Indeed, for moderate
Reynolds numbers, the near-dissipation range can span most of the available range
of scales. 1 Different perturbation theories, which start from scaling as a leading
mode, can be developed. Effectiveness of such theories is usually checked by
comparison with experiments. In the present paper we will explore a generic
analytic expansion of scaling in direction of the dissipation scale 5. Effectiveness
of the suggested perturbation theory has been shown for the turbulent flows with
moderate Reynolds numbers. Interplay between local and non-local regimes has
been considered as a possible hydrodynamic mechanism providing the basis for the
degenerate scaling of structure functions and extended self-similarity in turbulent
flows.

2. ANALYTIC PERTURBATIONS TO SCALING

Let us consider a dimensional function S(») of a dimensional argument 7.
And let us construct a dimensionless function of the same argument
s-1ds
= —" 1
alr) =~ M
If for L > r > n we have no relevant fixed scale (scaling situation), then for

these values of 7 the function «(r) must be independent on 7, i.e. a(r) =~ const
for L > r > n. Solution of Eq. (1) with constant « can be readily found as

Sr) = cr® (2)

where ¢ is a dimension constant. This is the well-known power law corresponding
to the scaling situations.

Let us now consider an analytic theory, which allows us to find generic
corrections of all orders to the approximate power law, related to the fixed small
scale 7. In the non-scaling situation let us denote

f=In(S/4), x=In(r/n) 3)

where A and 5 are dimensional constants used for normalization.
In these variables, Eq. (1) can be rewritten as
af

o =a) (4)
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In the non-scaling situation x is a dimensionless variable, hence the dimensionless
function «(x) can be non-constant. Since the ‘pure’ scaling corresponds to x > 1
we will use an analytic expansion in power series

W(X) =g+ L )
by nlx”"

where «, are dimensionless constants. After substitution of the analytic expansion

(5) into Eq. (4) the zeroth order approximation gives the power law (2) witho = .

First order analytic approximation, when one takes only the two first terms in the

analytic expansion (5), gives

S) = er®[In(r/n)]*. (6)

This is a generic analytic first order approximation to the scaling power laws
provided by the perturbation theory suggested above. Corrections of the higher
orders can be readily found in this perturbation theory.

For degenerate case with oy = 0 the second term in the expansion (5) becomes
the leading term

S(r) ~ [In(r/m]*™ (M

It was already mentioned that there are many different ways to develop perturbation
theory to scaling. The idea that just In(r/7n) is an appropriate parameter for the
finite-size corrections to scaling in turbulence was suggested in Ref. 15. On a
physical level this was related in Ref. 15 to the instabilities of the thin vortex
tubes (or filaments), which are the most prominent hydrodynamical elements of
turbulent flows. These instabilities usually appear as kinks readily transforming
into wave packets propagating along the filaments. One can consider such wave
packet with scale » and make use of the “localized induction” approximation
to the Biot-Savart formula.(!®) In this approximation, contributions of portions
at distances greater than ~ » > n to the velocity fluctuation in the immediate
vicinity of any given point on the filament are neglected. The vortex core radius,
which usually associated with 5, provides a cutoff from below. The vortex filament
dynamics in this approximation is described by the equation

dX_F In r b
di ~ ax 7)Y

where X is the position vector of a point on the filament, I is the vortex strength,
y is the local curvature, and b is the unit binormal vector of the filament. One
can see that in this approximation the dependence on r is completely determined
by the logarithmic term In(r/n) in the dynamic equation. This pure hydrodynamic
consideration was suggested in Ref. 15 as a basis for using just In(r /) in finite-size
corrections to scaling in turbulence (see also Sec. 4 below).
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3. TURBULENCE

The longitudinal structure function of order p for the velocity field”)
Sp(r) = (|Aul?) (8)

(Au = (u(r + x) — u(r)) - r/r) calculated for p = 2, using the data obtained in a
wind tunnel at R, = 206 and 487,17 is shown in Fig. 1. Here R, is the so-called
Taylor microscale Reynolds number. The experiment with a flow, which was a
combination of the wake and homogeneous turbulence behind a grid, is described
in Ref. 17. We invoke Taylor’s hypothesis 7 to equate temporal statistics to spatial
statistics.

The solid curves in these figures are the best fit by Eq. (7) corresponding to
the degenerate scaling. Figure 2 shows S,(r) calculated using data from a high-
resolution direct numerical simulation of homogeneous steady three-dimensional
turbulence, '® corresponding to 1024° grid points and R, = 460. The solid curve
in this figure also corresponds to the best fit by Eq. (7). As far as we know Eq. (7)
was suggested as an empirical approximation of the structure functions for the first
time in our earlier paper.(!?) Application of these results to correlation functions”
is in good agreement with the structure functions analysis (cf. for instance, Figs. 1
and 3).

Figure 4 shows the structure functions of different orders p for the wind-
tunnel data (R, = 487) and the degenerate scaling (7) is shown in the figure as the
solid curves. One can see that the degenerate scaling requires two fitting constants
just as the ordinary scaling does, and, in the examples discussed above, the range
of scales covered by the degenerate scaling is about two decades.

100 _ 101 — 000 00
6000
10" 10° -
£
» 102} 10 b
R =206 R =487
o . Szl~(ln r/").u 102 . Szl~(ln rlrl1)3'3 .
10° 10" 10% 10° 10° 10" 102 10° 10* 10°
rm rm

Fig. 1. The second order structure function S>(r/n) against r/n. The experimental data (R, =
206, 487)‘17) are shown as circles. The solid curves are the best fit of (7) to the data, corresponding
to the degenerated scaling.
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Fig. 2. The second order structure function S»(r/n) against /5. The DNS data1® (R). = 460) are
shown as circles. The solid curve is the best fit of (7) corresponding to the degenerated scaling.
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Fig. 3. Correlation function for velocity fluctuations against logr/n for R, = 487 (circles). 17 The
solid curve is drawn in the figure to indicate agreement with the degenerate scaling shown in Fig. 1.

4. A POSSIBLE HYDRODYNAMIC SCENARIO

In order to understand a possible hydrodynamic mechanism of the phe-
nomenon described above let us recall that in isotropic turbulence a complete sep-
aration of local and non-local interactions is possible in principle. It was shown by
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Fig. 4. Asin Fig. 1 (R, = 487) but for different orders of the structure function.

Kadomtsev ?? that this separation plays a crucial role for the local Kolmogorov’s
cascade regime with scaling energy spectrum

E(k) ~ 823k )

where £ is the average of the energy dissipation rate, €, k ~ 1/r is the wave-
number. This separation should be effective for the both ends. That is, if there
exists a solution with the local scaling (9) as an asymptote, then there should also
exist a solution with the non-local scaling asymptote. Of course, the two solutions
with these asymptotes should be alternatively stable (unstable) in different regions
of scales. It is expected, that the local (Kolmogorov’s) solution is stable (i.e.
statistically dominating) in inertial range (that means instability of the non-local
solution in this range of scales).

Roughly speaking, in non-local solution for small scales » only non-local
interactions with large scales L (1 > r/L) are dynamically significant and the
non-local interactions is determined by large scale strain/shear. This means that
one should add to the energy flux £-parameter (which is a governing parameter for
the both solutions) an additional parameter such as the strain s for the non-local
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solution. As far as we know it was noted for the first time by Nazarenko and
Laval @D that dimensional considerations applied to the non-local asymptotic
result in the power-law energy spectrum

E(k) ~ E k! (10)

both for two- and three-dimensional cases. Linear dependence of the spectrum
(10) on & is determined by the linear nature of equations corresponding to the
non-local asymptotic that together with the dimensional considerations results in
(10).?V Interesting numerical simulations were performed in Ref. 22. In these
simulations local and non-local interactions have been alternatively removed. For
the first case a tendency toward a spectrum flatter than ‘—5/3” is observed near
and beyond the separating scale (beyond which local interactions are ignored),
that supports Eq. (10) (see also below).

Following to the perturbation theory suggested in Sec. 2 both local and non-
local regimes can be corrected. The first order correction is

E(k) ~ k= [In(ka/ k)] (1)
and
E(k) ~ k™ '[In(kq/ k)] (12)

(where k; = 1/n) for the local and non-local regimes respectively (y and B are
dimensionless constants). In the case when 8 >> y the fist order finite-size correc-
tion in the non-local regime becomes substantial much ‘earlier’ (i.e. for smaller
k) than for the local (Kolmorov’s) regime (see Eq. (5)). This can result in viscous
stabilization of the non-local regime (cf Ref. 22) and, as a consequence, in the so-
called ‘exchange of stability’ phenomenon at certain k. = 1/r.. Thatis, fork < k.
the Kolmogorov’s regime is stable and the non-local regime is unstable, whereas
for k > k. the Kolmogorov’s regime is unstable and the non-local regime is stable.
For this scenario, at k£ = k. the Kolmogorov’s regime is still asymptotically scale-
invariant (i.e. Eq. (9) gives an adequate approximation for this regime), while for
the non-local regime the first order correction is substantial (i.e. Eq. (12) should
be used at k = k. for the non-local regime). In this scenario the Kolmogorov’s
regime plays significant role in the viscous stabilization of the non-local regime
for k > k. (cf Ref. 22), but for these & the non-local regime becomes statistically
dominating instead of the Kolmogorov’s one. Figure 5 shows a spectrum measured
in nearly isotropic turbulence downstream of an active grid at R, = 716 (the data
are reported in Ref. 19). The solid curve is drawn in the figure to indicate corre-
spondence of the data to the Eq. (12) (non-local regime), while the dashed straight
line indicates the Kolmogorov’s “—5/3” law to show possible interplay between
the Kolmogorov’s and non-local regimes at this Reynolds number.
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Fig. 5. Longitudinal energy spectrum against k7 in log-log scales. The data (circles) correspond to
a nearly isotropic (active-) grid turbulence R; = 716.(1%) The solid curve is drawn in the figure to
indicate agreement with the Eq. (12), while the dashed straight line indicates the “—5/3” Kolmogorov’s
law.

If one tries to estimate the second order structure function S,(r) as?
1/n
SH(r) ~ / E(k)dk (13)
1/r
for r < r, using Eq. (12), one obtains
Sa(r) ~ [In(r/m)]* (14)

with ¢, = B+ 1 (cf Sec. 3). For instance, for the data shown in Fig. 5 we
obtain ¢, >~ 3.9. Comparing Figs. 1, 2 and 5 one can see that « is monotonically
increased with Re;.

Let us generalize (13) introducing an effective spectrum E, (k)

I/n
Su(r) ~ / E,(k)dk (15)
1/r

(E»(k) = E(k)). Then using the dimensional considerations we obtain for the
non-local regime

3 n/2
En(k)N(;) k! (16)



Beyond Scaling and Locality in Turbulence 729

The first order correction is

=\ n/2
En<k)~<§) k" [in(kg/ k)1 (17)

Substituting (17) into (15) one obtains

n/2
S,(r) ~ (f) [in(r/m)]° (18)

with ¢, = B, + 1.
Thus the non-local regime can provide hydrodynamic basis for the degenerate
scaling of the structure functions.

5. EXTENDED SELF-SIMILARITY

In our previous paper!? we discussed possible relation between ESS and
structure functions given by Eq. (7). Now we can elaborate this relation with more
details. While in the near-dissipation range we observe the degenerate scaling an
ordinary scaling (presumably Kolmogorov’s one) has been certainly observed in
the inertial range of scales for very large Reynolds numbers (see, for instance,
Refs. 7,23). Therefore, one can expect the existence of a crossover scale 7. from the
ordinary scaling to the degenerate one (see previous section). At the scale r = r,
we can use a continuity condition between ordinary scaling (2) and degenerate
scaling (7)

8 = A[InGr./n]® (19)

for the structure functions of all orders (c and 4 are some constants). Let us denote
in general case

Sp(r) = Ayrées  Sy(r) = Ap[InGr/m)]* (20)

in inertial and near-dissipation ranges respectively.
Then condition of compatibility of the continuity Eq. (19) for different order
(m and n) structure functions
A = AplinGe/mIs A = Ay[inGre/mI” @1

can be of two kinds.
The first kind is applicable for arbitrary value of 7. and has the form

m / A/ Sn A/ Em
) e

while another kind is applicable for a fixed value of r, only. Below we will
be interested in the first kind of the compatibility condition. This condition, in
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particular, gives a power-law relation between moments of different orders

Su(r) ~ S (r), (23)
with the same exponent
g, Cm
ﬂm,n == (24)
Sy En

for both inertial and near-dissipation ranges (see Eq. (22)). The last phenomenon
was previously observed in different turbulent flows and was called Extended Self-
Similarity (ESS).>12) It is important to note that at ESS not only the scalings (23)
are the same in both regimes inertial and dissipative, but also the prefactors are
the same. Figure 6 shows as circles the exponents ¢, obtained from Figs. 1, 4 and
normalized by the exponent ¢3. For comparison we show by crosses in this figure
the normalized exponents obtained using ESS in the atmospheric turbulence for
large R, = 10340.3%

It should be noted that a high-resolution numerical simulation reported in a
recent paper!3) for low-Reynolds-number (R, ~ 10 — 60) flows shows no hint of
scaling-like behavior of the velocity increments even when ESS is applied. That
should return us to the Sec. 2 and recall us that the degenerate scaling in the form
of Eq. (7) is only a first non-trivial term in the perturbation theory. Moreover,
the question of convergence of the perturbation theory used in Sec. 2 become
significant at the Jow-Reynolds-number, when the dissipation scale is effectively
too close to the scales under consideration. Though, the authors of Ref. 13 claim
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Fig. 6. Normalized exponents ¢, /¢3 against p for R; = 487 (circles). The exponents were obtained
using the data shown in Figs. 1, 4. Crosses are the ESS exponents obtained for the atmospheric
turbulence data at R, = 10340. @3



Beyond Scaling and Locality in Turbulence 731

that: ‘the DNS scaling exponents of velocity gradients agree well with those
deduced, using a recent theory of anomalous scaling, from the scaling exponents
of the longitudinal structure functions at infinitely high Reynolds numbers. This
suggests that the asymptotic state of turbulence is attained for the velocity gradients
at far lower Reynolds numbers than those required for the inertial range to appear.’
This circle of problems can be also related to the possibility of fluctuations of
the dissipation scale. 1314 For the cases when these fluctuations are significant a
set of the expansions might be needed or (alternatively, for moderate Reynolds
numbers) calculation should involve averaging over the fluctuating cut-off . In
the last case the experimental and numerical data suggest that the average value
of 1 should not deviate strongly from the Kolmogorov dissipation scale (at least
for the moderate values of Reynolds number).

6. GENERALIZED ENERGY INPUT RATE

Figures 2 and 5 show that for sufficiently large Reynolds numbers, providing
a visible inertial interval, there is an overlapping between the two scalings: non-
local and local (Kolmogorov). This overlapping is based on the very nature of the
stability exchange between the two statistical regimes. Therefore, it is not a simple
task to determine the scale 7. from the S,(r)-data. A more fine information one
can infer studying

Dyi(r) = (Au’)

(cf Eqg. (8) and see Ref. 7, 15, 18). Unlike S3 most positive contributions are
canceled by negative ones in D;;;, and only the slight asymmetry of the Au prob-
ability density contributes to D;;;. However, this asymmetry has a fundamental
nature. Therefore, one can expect that the above used dimensional considerations
can be also used for D;;; for the both non-local and local regimes. For the local
(Kolmogorov) regime one has 7-1518)

_DLLL ~E&r (25)

while for the degenerate scaling

5\3/2
=Dy ~ (;) [In(r/m)]° (26)

Figure 7 shows — Dy (as circles) and — Dy /&r (as crosses) calculated using data
from the direct numerical simulation of homogeneous steady three-dimensional
turbulence. '® The solid curve in this figure corresponds to the best fit by Eq.
(26). In this figure one can see that the overlapping between the two regimes exists
even for the Dy;; (cf Fig. 2). However, a generalized energy input rate related to
Dy could give a key to our problem.
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Fig. 7. The DNS data(1®) (R, = 460) are shown against »/n as the symbols: —Dy-circles and
— Dy 11 /&r-crosses. The solid curve is the best fit of (26) corresponding to the degenerated scaling.

Let us consider the Navier-Stokes equations for a viscous incompressible
fluid, given by

ou; du; 1 ap 9%u;

i _ZOP T ek ), 27

a0 "“ax, pax,»+”ax/2.+f(x ) 72)
ou;
i _y, (27b)
8x,~

where f(x, t) is random force, v is kinematic viscosity and p is the fluid density. f
will be assumed to be Gaussian with zero mean and a rapidly oscillating character,
or a §-correlation in time. The second-rank correlation tensor

(fix+r,t+1)fi(x, 1)) ~ F;;(r)8(7). (28)

defines such fields. It was shown in Ref. 24 using Egs. (27) and (28) that S, and
Dy are related by the equation

as, 2 (’
Dy = 6v—2 — —/ x*Fi(x)dx, (29)
dr 1t Jo

It was also shown in Ref. 24 that

Fii(0) = 2(8). (30)
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F;; corresponds to an external energy input rate®® (cf Novikov’s relation®®:
(fix, y;(x, 1)) = 1 F;j(x = x')). Forr « LY
ds, 4

DLLL >~ 6\}W — g(é)r (31)

When the viscous term can be neglected this gives the Kolmogorov’s law (25).
One can formally rewrite (29) as

2 (" -
Dy = ——4/ x*F(x)dx, (32)
r=Jo

where the generalized energy input rate is defined as‘!>

. 3v d(x*dS,/d
F) = Fyo) - o TR,

Without the second (viscous) term in the right-hand side of Eq. (33) one
obtains the Kolmogorov law (25). Therefore, one can associate the first term in
the right-hand side of the Eq. (33) with the local (Kolmogorov) regime while the
second term can be associated with the non-local one. Gradients of these terms
can be associated with local and non-local interaction strengths respectively. Then
balance of the local and non-local interaction strengths should be reached at the
point given by the equation d F(x)/dx = 0. Let us denote position of the balance
point as x = x,,. One can expect that the crossover scale r. between the local
and non-local regimes (see Sec. 4) coincides with the balance point of the local
and non-local interaction strengths x,,, i.e. r. = x,,. It was shown in Ref. 15 that
position of the generalized energy input rate maximum x,,, = r,,,/1.22, where r,, is
position of — Dy, () maximum. Since 7, can be obtained from the data this gives
us a possibility to estimate 7. from the data as well. For instance, we know (!> that
P /N~ Ri”, hence r./n ~ jo.

In Fig. 7 we indicated position of the scale x, by an arrow and one can
see that overlapping of the two regimes can be substantial even for Dy;;. In
Fig. 8 we show the same data as in Fig. 7 but with a considerably higher resolu-
tion in a small vicinity of the x,, scale. The degenerate scaling fit (solid curve)
indeed seems to begin its declination from the data in a small vicinity of the
xm-scale in this case. To support this point we show in Fig. 9 analogous situation
observed for considerably smaller Reynolds number Re, = 125 (see also next
Section).

(33)

7. PASSIVE SCALAR

The inertial-convective regime of a passive scalar field transport in isotropic
turbulence for large Reynolds numbers is usually described using Obukhov-
Corrsin theory.(”? This theory predicts scaling spectrum for the passive scalar
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Fig. 8. — Dy against r/n. The same data as in Fig. 7 but with higher resolution in a small vicinity
of the x,, scale. The solid curve is the best fit of (26) corresponding to the degenerate scaling.
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Fig. 9. The same as in Fig. 8 but for R, = 125.

(6) fluctuations with the scaling exponent equal to “—5/3”
E%(k) ~ & V3g4k/3 (34)

where &, is the average value of dissipation rate of scalar variance, &y (cf Eq. (9)).
In the experiments, however, this regime is not usually observed (especially, for
moderate Reynolds numbers and in turbulent shear flows). In the last case the
experiments indicate a strong dependence of the passive scalar spectra on the
Reynolds number (see, for instance, Refs. 25, 26 and references therein). In
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the vein of the Sec. 4 the dimensional considerations applied to the non-local
asymptotic result in the power-law spectrum

E%(k) ~ i—‘) k! (35)

(cf Eq. (10) and®'22:27) Accordingly, both scaling regimes (34) and (35) can
be corrected (for simplicity we restrict ourselves by the case when the Schmidt
number is unity ®®). The first order correction is

Eq(k) ~ kP [In(kq/ k)] (36)
and
E°(k) ~ k™ '[In(kq/ )1 37)

for the local and non-local regimes respectively (y and 8 are dimensionless con-
stants, different from those in Eqgs. (11), (12)).

One can estimate the second order structure function for the passive scalar
fluctuations

$30r) = (1A01%) = (10(r +x) — 6(n)]*) (38)
as
I/n
S§(r) ~ / E%(k)dk (39)
1/r
(cf Eq. (13)). Then for < r. using Egs. (37) and (39) one obtains
S3(7) ~ [In(r/m)" (40)

with &, = B + 1 (cf Sec. 4).

Figure 10 shows Sg against r/n for the DNS data of homogeneous isotropic
turbulence described in Ref. 28, Péclet number P, = 427 and the Schmidt number
is unity (i.e. P, = R;). The solid curve is the best fit to the degenerate scaling (40)
(the dashed straight line indicates the Obukhov-Corrsin ordinary scaling 72%).
As in Sec. 4 we can generalize (39) introducing an effective spectrum E? (k)

1/n
SS(r)=<|A9|">~/ E, (k) dk 1)

1/r

(Eg (k) = E%(k)). Then using the dimensional considerations we obtain for the
non-local regime

= n/2
B~ (%) w (42)
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Fig. 10. Sg against /n. The DNS data (circles) of homogeneous isotropic turbulence described in
Ref. 28, Péclet number P, = 427 and the Schmidt number is unity (i.e P, = R;). The solid curve
is the best fit to the degenerate scaling (40) (the dashed straight line indicates the Obukhov-Corrsin
ordinary scaling (7-2%)),

The first order correction is

&g

n/2
B~ (2) ik @)

Substituting (43) into (41) one obtains

= n/2
S10) ~ (i—@) [in(r/m)] (44)

with ¢, = B, + 1.

Figure 11 shows S5 against /7 for the DNS data of homogeneous isotropic
turbulence described in Ref. 28 Péclet number P, = 427 and the Schmidt number
is unity (i.e P, = R;). The solid curves are the best fit to the degenerate scaling
(44).

One can readily expand the conclusions of the Sec. 5 regarding Extended
Self-Similarity on the case of passive scalar and we show effectiveness of this in
Fig. 12. The data for degenerate scaling (circles) were taken from the degenerate
scaling shown in Fig. 11 whereas the data for the ordinary scaling (triangles)
were taken from a high Reynolds number atmospheric experiment. ?%)

The overlapping phenomenon (Sec. 6) takes also place for the S¢ as for S,,.
In (A83) like in D;;; most positive contributions are canceled by negative ones
and only the slight asymmetry of the A probability density contributes to (A63).
However, similarly to D;;; this asymmetry has a fundamental nature. Therefore,
one can expect that (A#3) also can be used in order to determine r.. Moreover,
since (A@3) as function of #/n has a turnover point, as one can see in Fig. 13,
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Fig. 11. Sf against 7/n. The DNS data (circles) of homogeneous isotropic turbulence described in
Ref. 28, Péclet number P, = 427 and the Schmidt number is unity (i.e P;, = R;). The solid curves are
the best fit to the degenerate scaling (44).

the turnover point should indicate the point where the actual declination of the
degenerate scaling fit from the data should begin. In the turnover point derivative
of the function (A#3) has its minimum. In the inset to Fig. 13 we show with
high resolution the derivative in a vicinity of its minimum. We also indicate with
arrow the position of local maximum of the generalized energy input rate x,, >~ r,
calculated using Dy, for this case (cf Sec. 6).

One can see that the suggested perturbation theory with the degenerate scaling
is an appropriate tool for description of data in the near-dissipation range. For
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Fig. 12. Exponents extracted from Fig. 11 (circles) and for the fully developed atmospheric
turbulence (ordinary scaling in the inertial interval, triangles(zg)).
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Fig. 13. (A63) against r/5. The DNS data (circles) of homogeneous isotropic turbulence described in
Ref. 28, Peclet number P, = 427 and the Schmidt number is unity (i.e P, = R;). The solid curve is
the best fit to the degenerate scaling. The inset shows with high resolution the derivative of (A83) in a
vicinity of its minimum. The arrow indicates position of the generalized energy input rate maximum
Xm =~ re calculated using Dy .

modest Reynolds numbers the degenerate scaling applies to nearly the entire
range of scales. Crossover between the degenerate and ordinary scaling provides an
explanation to the Extended Self-Similarity. Interplay between local and non-local
interactions can be considered as a possible hydrodynamics mechanisms of these
phenomena.
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